

Black sigatoka disease model

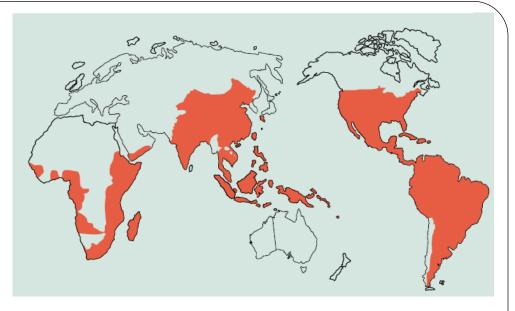
Simone Orlandini

Department of Plant, Soil and Environmental Sciences University of Florence

simone.orlandini@unifi.it

Black sigatoka

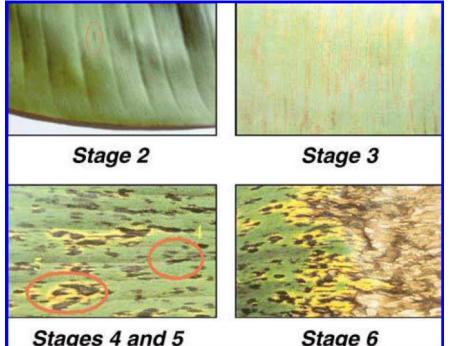
Common name pathogen: Black sigatoka Kingdom: Fungi Division: Ascomycota Class: Dothideomycetes Order: Mycosphaerellales Scientific names: Mycosphaerella fijiensis Host Banana (Musa sapientum)


The disease represents a relevant problem in Caribbean region, with a decreasing of the production of about 50% during critical years. Protection methods can cost about 1500 \$/ha/y.

Distribution

The disease caused by the fungus Mycosphaerella fijiensis was first recognized on the South-eastern coast of Viti Levu in Fiji in 1963 (Rhodes 1964).

Subsequently, the disease was reported in the Pacific Islands, Asia, Africa, in Latin America and in La Lima and Honduras in 1972.



Economic importance

Black Sigatoka is a fungal disease that can cut yields by up to three quarters and reduces the productive activity of banana plants from 30 to only 2 or 3 years. In the last years it has become a global epidemic. The disease spread is an important aspect considering that bananas are a staple food in Latin America and Africa.

Damage

Black Sigatoka is one of the most devastating leaf-destroying diseases. This disease causes significant leaf area reduction, yield losses of 50% or more, and premature ripening.

Control

Black Sigatoka is controlled by frequent applications of fungicides. Usually the banana farms have small dimension and product for local market; the farmers haven't the possibility to afford expensive measures to fight the disease. However, some cultivars of banana are resistant to the disease. The main good practice to contrast the disease spread are: removal of affected leaves and a good drainage.

CAMI project - format for submitting country information

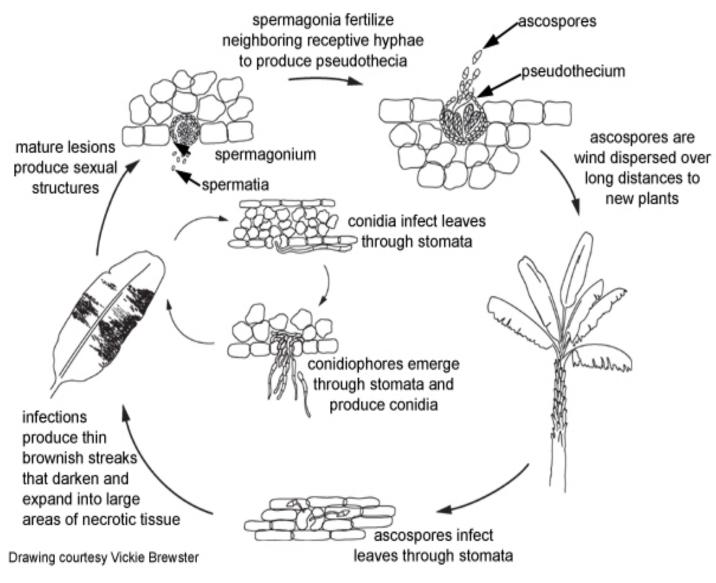
Crop	Economic importance	Produc tion	# Produ		Crop p	henolog	y	# Hec	,	Economic importan	Availability of
	of crop to the nation/co mmunity1	season (Wet/ Dry/Ye ar round) 2	cers	Grow th perio d	tive	uctive	—		ase	-	meteorologic

Major pest/disease	Year/time of year infestation	Intensity of infestation5	Problem to be solved with weather related model	Previous experience with the use of model6	Contact Person with e-mail id

Life cycle

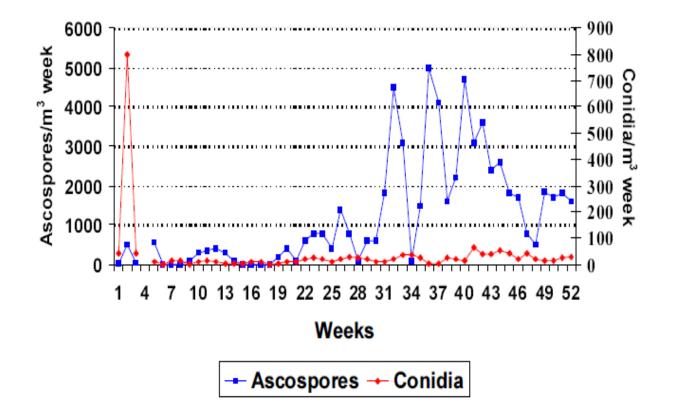
- The same conditions required for optimum plant growth are also conducive for development of black Sigatoka. The disease does not develop well under cool conditions or areas of high elevations. Shading can reduce symptoms expression.
- Conidia and ascospores are important in its dispersal. The conidia are mainly water-born to short distances, while ascospores are carried by wind to more remote places (the distances could be limited by their susceptibility to ultraviolet light). Over sixty distinct strains with different pathogenetic potentials have been isolated.

Biological cycle - conidia and ascospores


Because M. fijiensis produces relatively few conidia, ascospores are considered to be more important in the spread of black Sigatoka

Conidia become more important during dry periods when disease development is delayed because of the presence of less conducive climatic conditions.

Ascospores are the primary means of dispersal over longer distances within plantations and into new areas, and are the usual means of spread during extended periods of wet weather


SOURCE: Gauhl, 1994, 2000; Fullerton, 1994; Stover, 1980; Jacome et al., 1995; Jeger, 1995, Meredith, 1973

Biological cycle

Black sigatoka - Disease Cycle (Drawing courtesy of Vickie Brewster)

Seasonal variation of ascospores and conidi in the Caribbean zone of Costa Rica

Source: Gauhl, 1994

Biological cycle

Ascospores are produced in pseudothecia in mature lesions, which are common on both sides of the leaf surface.

The ascospore release requires the presence of a film of water from rain or dew that imbibes the pseudothecia and results in the forcible ejection of the ascospores through the leaf boundary layer, where they are disseminated by air currents.

During infection the Germ tubes take approximately 48 to 72 h to penetrate the stomata.

Successful infection is promoted by extended periods of high humidity and the presence of free water on the leaves; Maximum germination occurs when there is **free water present**.

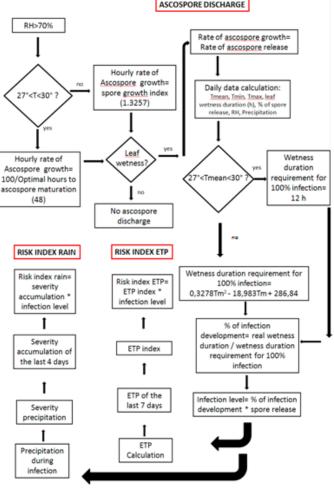
THE MODEL

Black sigatoka model

The model describes the infection caused by ascospores produced by pathogen.

MODEL INPUT: hourly mean temperature, hourly relativity humidity and daily or hourly precipitation data.

The model considers different phases


1. ASCOSPORES FORMATION

2. ASCOSPORE DISCHARGE

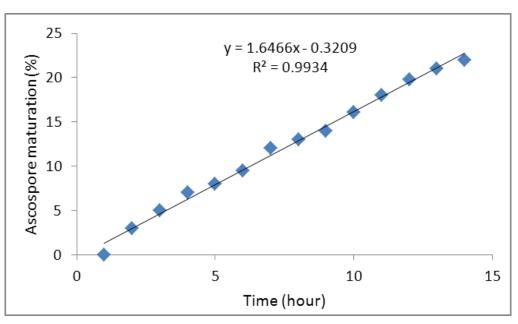
3. INFECTION

4.THE RISK INDEX

MODEL OUTPUT: risk index of disease

1. Ascospore formation

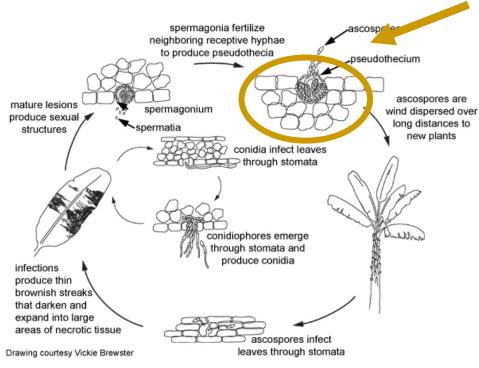
The model for ascospore formation uses temperature and relative humidity.


Ascospore formation takes place if:

- Relative Humidity \geq 70%
- Optimum temperature is between 27 30 °C.

At this temperature the total production of ascospores is reached after 48 hours.

At lower o higher temperature the % of ascospore maturation changes following the function presented in Figure below.

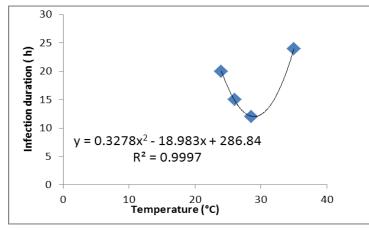

Trend of ascospore maturation for T<27°

Source: Stover, 1980; 1983; Smith et al., 1997, Duthie, 1997

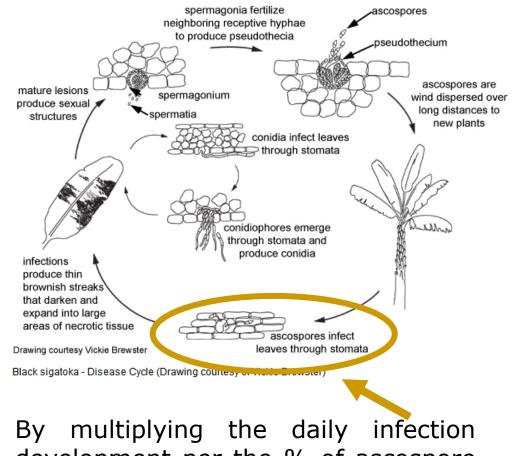
2. Ascospore discharge

This phase requires leaf wetness condition. Due to the lack of leaf wetness duration (LWD) data, an empirical threshold of UR >85% can been considered to estimate LWD

Black sigatoka - Disease Cycle (Drawing courtesy of Vickie Brewster)


Source: Stover, 1980; 1983; Smith et al., 1997, Duthie, 1997

3. Infection


The Infection takes place during periods of leaf wetness.

Under optimum temperature (27°<T<30°C) infection is completed in 12 hours of wet conditions.

If temperature is not optimal, this phase needs more time following the equation shown in figure

Infection duration with different levels of temperature

development per the % of ascospore release, daily level of infection risk was estimated.

Source: Stover, 1983; Chuang and Jeger, 1987; Jacome et al., 1991; Jacome and Aschuh, 1992; 1993

Final Risk Index

The risk index was obtained by combining the infection level obtained with the described method and the risk level due to meteorological conditions. Two methods can be used, the first based on evapotranspiration and the second considering rainfall.

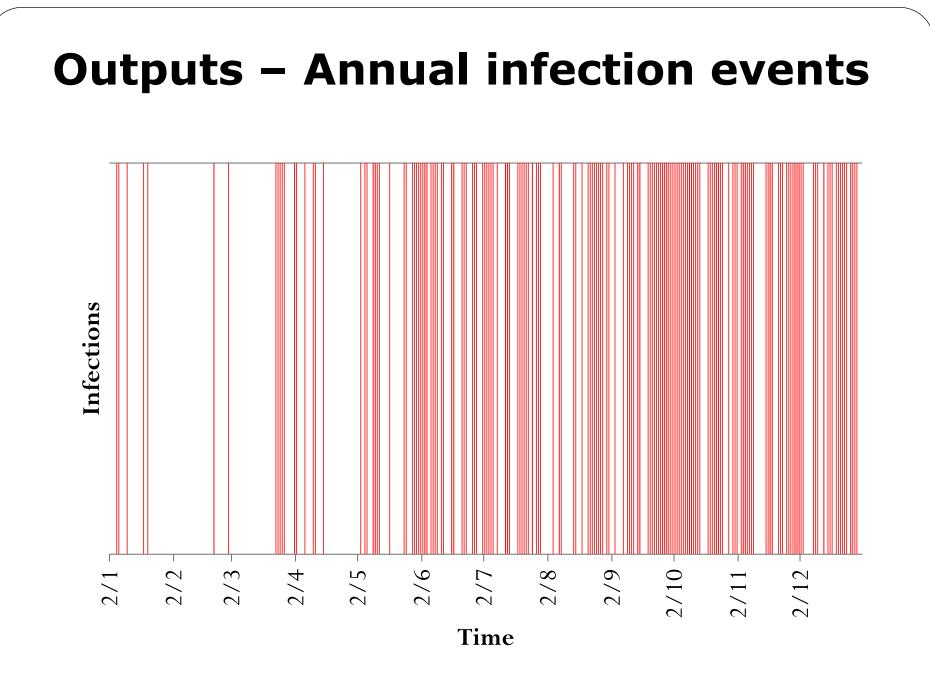
The first method considers **Potential Evapotranspiration**. Hargreaves-Samani formula (1982) was used.

The **risk ETP index** is based on accumulated ETP during the last 7 days

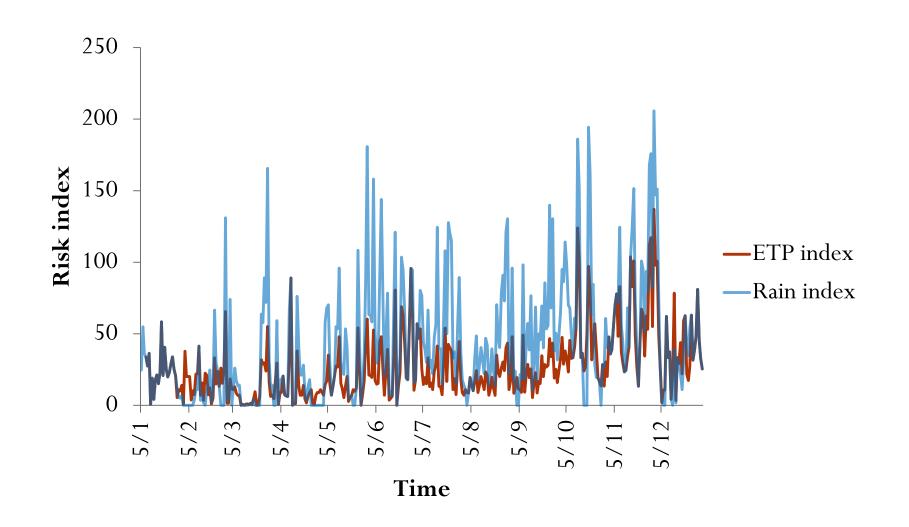
ETP	Risk ETP in	dex
>40 mm	No risk :	0
30≤x≤ 40 mm	Low risk :	1
22 <x<30 mm<="" td=""><td>Average risk:</td><td>2</td></x<30>	Average risk:	2
≤ 22 mm	High risk:	3

The **final risk index** is calculated with the following equation: **infection level * risk ETP index**

Final Risk Index

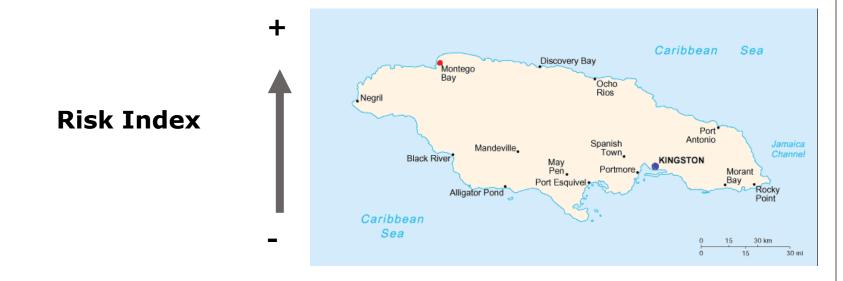

The second risk evaluation model uses the **amount of precipitation** during the infection events:

Rainfall	Severity
0 mm	1
0 <x<2,5 mm<="" td=""><td>2</td></x<2,5>	2
2,5 ≤ x ≤ 5 mm	3
5 <x<10 mm<="" td=""><td>4</td></x<10>	4
≥10 mm	5

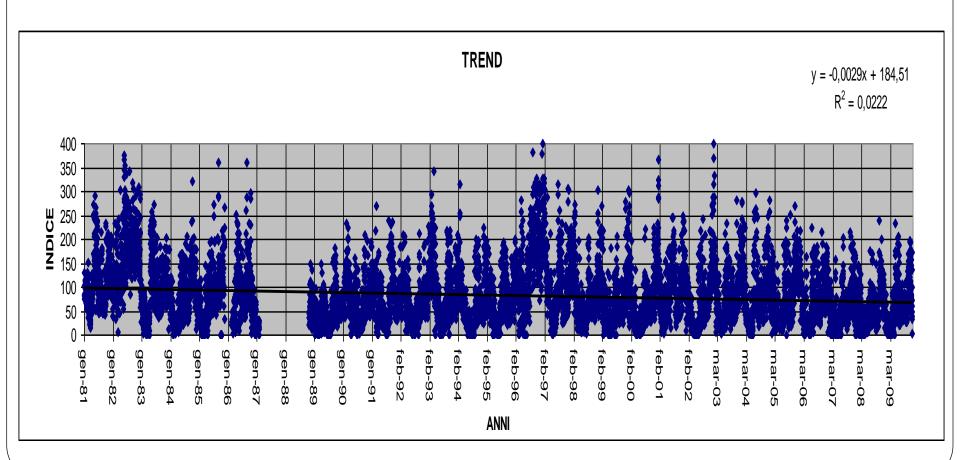

The risk is determined considering the accumulation of this severity values for the last 4 days:

Severity accumulation	Risk rain index
0	No risk: 1
0 <x<4< td=""><td>Low risk: 2</td></x<4<>	Low risk: 2
4 ≤ x ≤ 12	Moderate risk: 3
>12	High risk: 4

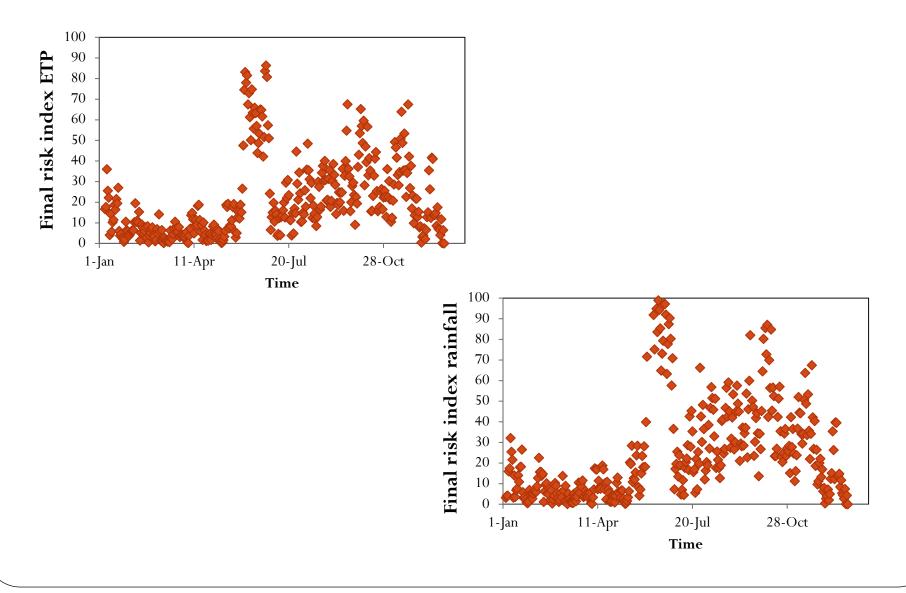
The **final risk index** is calculated with the following equation: **infection level * risk RAIN index.**


Outputs - Trend of the risk index

MODEL VERIFICATION


Jamaica

Station	Risk index	Mean Temperature (°C)	Rainfall (mm)
Montego Bay	41,39	26,64	1950
Kingston	5,24	26,25	831


Trinidad e Tobago

Trend of risk index during the climatic series 1981/2009

S. Lucia

Risk index according ETP and Rainfall 2000/2010

NEXT STEPS

MODEL CALIBRATION, VALIDATION and SENSITIVITY ANALYSIS

Needs of data and information

independent experimental data in several fields or years representing typical climates of the Caribbean regions

Data request

- geographical position of the farm (Lat, Long, elevation, etc.)
- meteorological data (T, RH, LW, Rain) measured close to the farms, to run the model
- biological data (banana growth and development, disease infections and severity, risk index in untreated fields)
- > any other information useful to explain the data (variety, farm dimension, etc.)

Model bias

$$MBE = \sum (y_o - y_s) / n$$

Mean bias error

Mean bias percentage error $MB\% E = 100 \left[\sum \left(\frac{y_o - y_s}{y_o} \right) \right] / n$

Data correspondence

Root mean square error

Mean asbolute error

Mean asbolute percentage error

$$RMSE = \left\{ \sum (y_o - y_s)^2 \right] / n \right\}^{0.5}$$
$$MAE = \sum |(y_o - y_s)| / n$$
$$MB\% E = 100 \left[\sum (|(y_o - y_s)| / y_o) \right] / n$$

Statistical analysis

Correlation analysis (determination coefficient)

		MRE	E M	R%E	MAE	MA%E	Slope	Intercept	R	2	EF
<mark>downy m</mark>	ildew						0.85 ^{ns}	0.15 ^{ns}	⁶ 0.97**	k	
		-0.22	-3	33.03	1.2	92.39					0.92
leaf area		166.14	ŀ	2.21	456.49	5.26	1.00 ^{ns}	125 ^{ns}	0.99**	*	0.97
				20		10 12	· ·				
						Change (%)				
Year			Tempe	rature				Relative hu	umidity		
	-10	-5	0	5	5 10		-1() -5	0	5	10
1995	9.29	12.1	16.85	21.46	5 13.54		1.61	l 6.79	16.85 3	7.04	73.87
1996	1.06	2.36	2.26	2.4	4.66		0.36	6 0.68	2.26 1	2.22	56.91
1997	4.47	5.5	3.04	3.4	4.59		0.57	7 2.64	3.04	7.99	16.51

5.13

0.34

22.09

3.6

1.4

36.87

4.18

1998

3.6

4.94

5.1

NEXT STEPS

SOFTWARE AND APPLICATION

BLACK SIGATOKA REPORTING SYSTEM

GetData

Common name pathogen: Black sigatoka Kingdom: Fungi Division: Ascomycota Class: Dothideomycetes Order: Mycosphaerellales Scientific names: Mycosphaerella fijiensis Host: Banana (Musa sapientum)

Why Model Black Sigatoka

Black Sigatoka also known as black streak disease is caused by ascomycete fungus. This disease has the ability to reduce fruit yield by as much as fifty percent(50%),reduce leaf area and by extension incites premature ripeneing of the crop. In the caribbean context the disease is known to have an enormous effect on banana production and jeproadize small farmers livelihood.

Can it be managed?

Mycosphaerella fijiensis can be controlled by frequent applications of fungicides, removal of affected leaves, good drainage, and sufficient spacing of plants.

The Program

The Black Sigatoka Monitoring System was created so as to mitigate the effects of the disease by providing risk indexes based on evapotranspiration (evapoartion and plant transpiration) and rainfall. This was conceptualised through the collboraive efforts between the (CAMI)Carribbean Agricultural and Meteorological Initiativ and the Department of Plant, Soil and Environmental Science - University of Florence (Italy)

LACK SIGATOKA OBTAIN F	RISK		Home	Update	Obtain Risk	Add New Station	GetData
Station Info:							
Station:	select						
Year	2000						
Month:	January						
Date	20						
		submit					
			_				
	•					<u>^</u>	
Mid Month Risk Assess	n Risk Index 49.16924		RISK Index]		

Mid M	lonth Risk As	ssessment				
Date	2000-01-05	Rain Risk Index	49.169246673584	ETP RISK Index		
Date	2000-01-06	Rain Risk Index	24.5420703887939	ETP RISK Index		
Date	2000-01-07	Rain Risk Index	29.3338832855225	ETP RISK Index	29.3338832855225	
Date	2000-01-08	Rain Risk Index	25.3040904998779	ETP RISK Index	25.3040904998779	
Date	2000-01-09	Rain Risk Index	31.4894104003906	ETP RISK Index	31.4894104003906	
Date	2000-01-10	Rain Risk Index	0.693901419639587	ETP RISK Index	0.693901419639587	
Date	2000-01-11	Rain Risk Index	19.0853385925293	ETP RISK Index	19.0853385925293	
Data	2000-01-12	Rain Rick Index	1 21 202722720102	ETP RICK Index	1 21 208782720102	

	IGATOKA OBT	AIN RISK		Home	Update	Obtain Risk	Add New Station	GetData
	Station In	fo:						
	Station:	select-	💌		I	dentifica	ation of a ri	sk
	Year	2000			tł	nreshold	l (index rang	ges
	Month:	January	×				n 0 and 150	
	Date	30						/
_					,			
						-		
Mid M	Ionth Risk A	ssessment					^	
			13.613392829895	ETP RISK Index	13.613392829	1895		
Date	2000-01-15	Rain Risk Index	13.613392829895 23.1081733703613					
Date Date	2000-01-15 2000-01-16	Rain Risk Index Rain Risk Index		ETP RISK Index		3613	H	
Date Date Date	2000-01-15 2000-01-16 2000-01-17	Rain Risk Index Rain Risk Index Rain Risk Index	23.1081733703613	ETP RISK Index ETP RISK Index	23.108173370)3613)6133		
Date Date Date Date	2000-01-15 2000-01-16 2000-01-17 2000-01-18	Rain Risk Index Rain Risk Index Rain Risk Index Rain Risk Index	23.1081733703613 52.2321243286133	ETP RISK Index ETP RISK Index ETP RISK Index	23.108173370 52.232124328)3613)6133 /2217		
Date Date Date Date Date	2000-01-15 2000-01-16 2000-01-17 2000-01-18 2000-01-19	Rain Risk Index Rain Risk Index Rain Risk Index Rain Risk Index Rain Risk Index	23.1081733703613 52.2321243286133 20.8362560272217	ETP RISK Index ETP RISK Index ETP RISK Index ETP RISK Index	23.108173370 52.232124328 20.836256027)3613)6133 /2217)8184		
Date Date Date Date Date Date	2000-01-15 2000-01-16 2000-01-17 2000-01-18 2000-01-19 2000-01-20	Rain Risk Index Rain Risk Index Rain Risk Index Rain Risk Index Rain Risk Index Rain Risk Index	23.1081733703613 52.2321243286133 20.8362560272217 35.5023460388184	ETP RISK Index ETP RISK Index ETP RISK Index ETP RISK Index ETP RISK Index	23.108173370 52.232124328 20.836256027 35.502346038 25.135438919)3613)6133 /2217)8184)0674		